tmate: A scalable UNIX terminal sharing/management tool

Paper # 238

1 Abstract

tmate is a remote terminal application that supports
easy session sharing, NAT traversal, and both SSH and
HTMLYS accesses. It augments the tmux terminal multi-
plexer and extend its features to a cloud based service.
We made our geo distributed deployemnt a public ser-
vice. It coordinatates more than 4000 paired sessions per
month.

2 Introduction

Screen sharing technologies and remote desktop applica-
tions have been developed in the past two decades to pro-
vide numerous use cases, ranging from demoing a prod-
uct, to performing troubleshooting. In the UNIX world,
remote terminal applications have been around for much
longer than that, the most popular being Secure Shell
(SSH). However, SSH do not allow an easy way to share
the same terminal with other parties. Terminal multiplex-
ers such as tmux [?] provide terminal sharing capabili-
ties, but lack remote connectivity features leaving users
having to setup SSH tunnels.

This paper describes tmate, a system that allow users
to export UNIX terminals into the web seamlessly. tmate
solves the problem of remotely sharing terminals ele-
gantly by offering both HTMLS5 browser and SSH ac-
cesses to a given terminal. The predominant usecases
of terminal sharing is similar to the screen sharing ones,
namely, doing pair-programming, troubleshooting is-
sues, or managing servers from a remote location. With-
out tmate, users typically do the following steps: 1)

1) help program maintainers troubleshoot non-
reproducible issues.

It happened many times that when someone reports an
issue on one of my open-source project, I cannot repro-
duce the bug locally. In this case, I ask the user to install
tmate and share their terminal with me which allows me
to quickly jump in their environment and quickly resolve

the issue. Often, resolving the issue would have been
much more difficult and time consuming if done through
standard communication channels as it would not allow
interactive debugging.

I actually found that people would be much more com-
fortable sharing their terminal and allow me to see pro-
prietary source code they are working, than sharing their
code directly for IP/NDA reasons.

2) remote pair-programing

a) Remote pair programming can be difficult to set up.
It often involves dealing with creating local accounts,
managing SSH keys, port forwarding router configura-
tion. This is cumbersome to manage. tmate allow termi-
nal sharing to a friend in a few keystrokes (8 to be ex-
act), providing that SSH connections are allowed to the
outside world (which is most likely true for a developer).

Right now, tmate is seeing 1000 sessions per week.
Most of them are seen Mon-Fri, 10am-6pm.

b) tmate could tunnel tcp/udp traffic, to expose lo-
cal http servers so the remote pair could access the host
http servers through its own browser. pairing extensions
could be made in the future to synchronize browsers.

¢) Perhaps tmate could provide integration with google
hangouts / skype.

d) since tmate is a fork of tmux, and tmux allow split-
ting the terminal in multiple panes, tmate allow it too. in
the future, we might want to allow “rogue mode” where
two different user can type in two different panes at the
same time without interfearing with each other. This
could be also useful to implement some sort of chat win-
dow.

3) server management and administration

In small and medium sized startups, sysadmins have
the task of overseeing all the production servers. tmate
allows the sysadmin to manage terminals in its fleet of
servers. There are a few useful use cases for the sysad-
mins:

a) First, by ensuring that all developers only go
through tmate when accessing a terminal in production,

tmate can record who did what on which server accu-
rately. This complete auditing feature is not available
in other systems. This feature can be useful in critical
situations. For example, when the production system en-
counters a failure, down, the sysadmin has to fix the issue
and bring the system back online as soon as possible. In
its debugging task, the sysadmin often needs to have vis-
ibility over recent human intervention and see at a glance
who did what.

b) tmate can act as an initd daemon to launch all
services on the production servers. Typically, services
(databases, web servers, etc.) can log their output to
STDOUT. Each service would be spawned in an inter-
active terminal on boot. This way, tmate can track the
log output of all services, avoiding the need for sysad-
mins to ship the logs to some other server. tmate can pro-
vide all features 3rd party logging systems can do, while
providing a way for sysadmins to intervene directly in
terminals, and inspect, for example the file system. A
sysadmin may also triggers actions against specific regu-
lar expressions when seen on the output.

c¢) Further, tmate could detect applications and parse
their output content. For example, suppose you have
three mongodb instances, each running in their respec-
tive tmate terminal. The tmate dashboard (through the
tmate browser http interface) can display custom styling
for the terminal thumbails. e.g. green borders for the
primary database, and yellow borders for the secondary
databases. We can even do heavy terminal interpreta-
tion. for example, if tmate detects top/htop running in the
terminal, it may provides cpu/mem graphs, and provide
history of the resource utilization of the machine, which
can be useful for aggregating data on a large amount of
machines. These visual queues allow sysadmins and de-
velopers to quickly know which terminal to go to when
problems arise in their system allowing them to take ac-
tion faster.

4) augment terminals on personal computers

a) tmate provides a recording of all terminal input/out-
put on the local machine. This is great for a number of
reasons: 1) The user can go back in time to see exactly
how he performed a certain task. Looking at the bash
history is often not good enough, esp. when files are
edited. tmate can provide full-text search to help users
locate certain moment in their terminal history. tmate
can also provide statistics over terminal usage and hints
the user with useful command aliases and tips to improve
workflow.

b) tmate can interpret the terminals and the inputs.
with the use of community provided plugins, tmate could
suggest solutions for the issues someone may be facing.
For example, when seeing certain error messages like
”Error: Unknown method abc() in module Blah”, tmate
could match this error and suggest a workaround based

on stackoverflow, or whatever database user may code.
directly at the location of the error. tmate could also (but
we would not do it because it’s a little evil) provide tar-
geted ads directly to developers. For example, if tmate
detects a fresh new ruby-on-rails project, it could sug-
gest the user to install newrelic, heroku, etc. in the status
bar.

2.1 User Experience and Challenges

When designing tmate, we were facing the following
challenges:

1) Getting the pairing setup user experience right. -
We want to get users (hosts) to share terminals with a
minimal amount of steps and keystrokes. - We want
other users (friends) to connect to shared terminals with-
out having to install any additional clients. With these
constrains, we want to maximize the amount of security
we can have. This means that friends must use SSH or
a web browser with HTTPS. This also means that if the
host is behind a NAT, we somehow need to traverse that
when clients connect to the host. We deal with this by
having an external server to connect the two parties.

We got the current workflow down to three steps:
a0) (install, one time only) run “brew install tmate” al)
run “tmate” b) copy/paste the connection string to the
friend c) which he then copy/paste in his terminal or web
browser

2) Get the highest availability we can. tmate should al-
ways start whether the connection is slow, interrupted, or
disconnected. Whatever happens in the terminal should
be unaffected by the network connection. Whenever a
disconnection happen (tmate -/ remote tmate, or remote
tmate - proxy, or proxy -/ master), things should recon-
nect automatically and sync back. Right now, we use a
postgres DB, which is a single point of failure, but if it
fails, the tmate service degrades well enough. The html5
connections would go out of service, but the SSH con-
nections remain available.

3) Get the lowest latency possible, and uninterrupted
service To get the lowest latency possible, we provide
servers across the globe. The ultimate performance
would be to do peer to peer, which would be an avenue
to explore if we could afford to have another client as
SSH. Any server-side code upgrade should not discon-
nect any of the existing connections (hence erlang, and
its hot code swap features). Any server-side code up-
grade should maintain backward compatibility with older
tmate clients (sometimes quite hard).

4) One of the decision that was difficult to make was
to fork tmux, or do a standalone client. The reasons to
use tmux were: a) It already provides an overlay on top
of a terminal with status bars and everything. b) Users
are familiar with tmux, it’s a very popular tool. So if we

want to interpret terminals (and we do), it’s easier to go
in that direction. Note: the html5 interface already ben-
efits from this decision as it understands the panes and
windows semantics. Using a standalone client would not
be able to interpret a tmux session running inside of it.
The reasons to not use tmux were: a) the tmux codebase
is large, and is difficult to understand. Synchronizing its
state require a high level of C proficiency.

5) Provide privacy garantees and provide end-to-end
encryption.

3 Related Work

In the environment sharing realm, numerous tools exists.
For example rdesktop, VNC, and more comprehensive
solutions like Citrix, WebEx, GoToMeeting, twitch.tv all
provide desktop sharing capabilities. However all these
tools more or less stream videos. Streaming videos may
have high bandwidth requirements, and do not offer nec-
essarily good quality for text only environments.

Other tools provide sharing capabilities such as vanilla
tmux, or wemux, but require SSH setup for others on
the host machine, and do not provide any solutions with
respect to NAT traversal.

Others have provided HTMLS terminal sharing clients
such as gotty, tty.js, wetty, or termshare. But these only
function as a regular web server, and provide no NAT
traversal capabiltiies, provide no high availability fea-
ture, nor dual SSH/HTMLS access.

- examples of web based terminals integration: * ¢9.io,
nitrous.io, google cloud engine

- low latency ssh like: * mosh

- CI tools: * circle-ci, offers SSH access. * codeship,
offers SSH access. * jenkins

terminals in the cloud: * auditd * bashhub * papertrail

4 Architecture

TODO diagram inside the servers with the different com-
ponents

related work

On a high level, the architecture is the following: -
Users run the tmate client (host) on their machine. tmate
is a fork of tmux which is a terminal multiplexer. - The
state of the tmate host is replicated to a remote tmate
daemon on tmate.io. - The remote tmate is also a fork
of tmux, and has been modified to accept SSH connec-
tions. - SSH clients connect to the remote tmate server,
and since tmux is a terminal multiplexer, clients attach
to the terminal as a tmux feature. However keystrokes
are sent direcly to the tmate host, which then replicates
its effects to the remote tmate daemon. - Additionally,
the remote tmate daemon forwards the replication log

stream to a daemon on the same machine, the proxy ser-
vice. - The proxy implements websockets to serve html5
clients the replication stream - The pairs (remote tmate
daemon, proxy) are geographically replicated to allow
best latencies for clients. - The proxy sends events to a
master service, which sits on top of a SQL database and
serve the web interface. - The proxy also send events to
user-defined webhooks. - The master is a traditional web
server in the sense that it manages users, sends emails,
etc. However, it does not serve HTML, but only pro-
vides JSON APIs. The web user-interface is a separate
javascript frontend application that communicates with
these APIs. - The web interface is a javascript applica-
tion served from a CDN.

4.1 tmate client on host machine

The host is the machine that runs the actual programs
in the terminals. On the host, the user launches tmate.
Since tmate is a fork of tmux (terminal multiplexor), the
same terminology and architecture applies. tmux itself
follows a server-client architecture, which tmate reuses.
- the local tmate server runs all the sessions. A session
have many windows. A window have many panes. A
pane is essentially a pty that runs a shell or some other
program. - on the host, the user runs a local tmate client
which connects to the local tmate server to display a sin-
gle session through a UNIX socket. The client provides
its terminal pty file descriptor to the server, which then
directly renders on the client’s screen. This is why the
tmux client/server architecture is not compatible across
an IP network.

tmate adds non trivial modifications to the tmux
codebase. (43 files changed, 2894 insertions(+), 105
deletions(-)) tmate adds the following behavior to tmux:
1) when starting, tmate reads a local /.tmate.conf in ad-
dition to the local /.tmux.conf that allow users to specify
which tmate server they want to replicate to. A custom
replica host and its SSH fingerprints, and user-defined
webhooks may be specified. 2) The replication stream
buffer is initialized. We need to do this early because
we do not block on the connection to be established be-
fore allowing terminal commands to run. Further, the
replica needs all the tmux commands specified in the
configration files to be replicated, which is done before
connecting to the replica. 3) Once the local tmate server
is running, it connects to each of the IP that ssh.tmate.io
resolves to (or the user configured host). The connec-
tion follows the SSH protocol through libssh. This al-
low authentication of both the server and the clients, pro-
vides encryption, and channel windowing. If the user
has ssh keys that need a passphrase, the user is asked for
the passphrase in the bottom of the terminal. 4) Once
the local tmate server has completed an SSH handshake

with one of the replica server, that replica is elected for
being the replica to be used, and all the other pending
connections to other IPs are killed. This is useful for a)
fault tolerance and b) selecting the remote tmate server
with the lowest latency. 5) Once a successful SSH con-
nection has been established to a remote tmate, the re-
mote tmate gets assigned a session token and forwards
a connection string to the local tmate (e.g. ssh SES-
SION_TOKEN @ny.tmate.io), which is displayed in the
status bar.

4.2 remote tmate replica

The original tmux codebase is modified to accomodate
our needs (59 files changed, 4082 insertions(+), 186
deletions(-))

The remote tmate daemon accepts connections on the
SSH port. Each new SSH connection gets forked into
a new process. A connection to the tmate proxy is es-
tablished right away. If this connection fails, the process
dies. This abords the SSH handshake, which is important
for the tmate client so it continues trying other servers. If
the SSH handshake has not completed after 60 seconds,
the process dies. Note that the forked processes create
their own process group with setpgid(0,0) to allow the
parent to be restarted through upstart without killing its
children. We force compression on the SSH protocol to
save bandwidth, as text editors such as VIM can be very
verbose. After doing the SSH handshake, three things
may happen: a) Either the SSH client asks for the tmate
subsystem, which would be a local tmate client asking
for replicating its state. b) Or the SSH client requests a
pty and a shell, in which case this would be a request to
attach to an existing remote tmate server. ¢) Or the SSH
client requests to execute a command, in which case the
command to be executed is forwarded to the proxy.

4.2.1 SSH tmate subsystem

a) In the case the SSH client asks for the tmate sub-
system: 2) a session_token and a read-only session to-
ken are generated through /dev/urandom. These to-
kens are comprised of 25 alphanumeric characters.
3) The tmux server is set to operate on the /tmp/t-
mate/jsession_token;.sock unix socket, and a symbolic
link of the name /tmp/tmate/jro-session_token,.sock is
created to point to the real unix socket. 4) Because the
tmux codebase is large (45,000 LoC) we have to assume
that an attacker can exploit bugs in the tmux codebase to
gain arbitrary code execution. To alleviate this issue, we
take a few precautions by isolating the tmate forked pro-
cess into a tight jail. The steps are the following: a) All
necessary file descriptors are opened (e.g. ncurses termi-
nal info, tmux unix socket, log file) b) get into an empty

chroot. c) we enter a pid,ipc,network namespace. d) and
finally the uid,gid is switched to nobody The network
namespace is important as we do not want the attacker to
connect to various of our services and databases. Note
that the attacker can still communicate with the proxy as
he has full access to the proxy connection. 5) the tmux
server is finally started and replicates the host tmate state.

4.2.2 SSH pty request

b) In the case the SSH client requests a pty: 1) the user-
name is the session token. The corresponding UNIX
socket is opened in /tmp/tmate/;session_token;.sock. If
it is a symbolic link (through stat()), the client is set to be
a read only client (all of its inputs are discarded). Note
that if the socket cannot be found, a random sleep is in-
serted to make timing attacks harder. 2) The process is
jailed 3) A “tmux attach” command is performed on the
tmux socket, and the ssh pty is given to the remote tmate
server for rendering. 3) pressed keys are interpreted by
the remote tmate server. Key bindings are the same as
the local tmate server as we replicated the tmux configu-
ration. These key bindings triggers tmux commands (e.g.
”split-window -v”), which are forwarded to the tmate
host. 4) client pty sizes are also forwarded to the local
tmate server. This way, the local tmate server can choose
an appropriate window size that suit all clients.

In the future, we want to also accept mosh clients. This
would allow slow clients to join a session. However, this
would not make the local to remote tmate connection tol-
erance for slow network.

4.2.3 SSH exec

¢) In the case the SSH client requests a command ex-
ecution: The command the client runs is typically of
the form “ssh ssh.tmate.io identify TOKEN”. That com-
mand is an example of how a user would login on the
web interface by using his SSH credentials. 1) The com-
mand and its arguments are sent to the proxy 2) When
the proxy returns a message and an exit code, they are
forwarded to the STDOUT and exit status of the SSH
client.

the local and remote tmate servers are coded in C, and
use the reactor pattern with libevent.

4.3 Protocol between the host and the
replica

The communication between the tmate host and the
tmate replica uses msgpack, an encapsulation format
similar to JSON, but a little faster and more compact as
it’s all binary.

The host sends a stream of messages to the replica.
These messages are defined as follow:

4.3.1 host to replica

* [OUT_HEADER, int: proto_version, string:
version] This is the first message sent to the replica.
This announces the current protocol version, and the
client version, useful as we want to maintain backward
compatiblity against old clients.

* [OUT_SYNC_LAYQUT, [int: sx, int: sy,
[[int: win_id, string: win name, [[int:
pane_id, int: sx, int: sy, int: xoff,
int: yoff], ...], int: active_pane_id],

..], int: active_win_id] This message sends
the current layout of the session. It sends the current
terminal size, and all the attributes of the windows. For
each window, the window title is serialized, and a list
of panes is sent. For each pane, we send the cursor
position, and the position within the window. When
receiving such message, the replica figures out which
window, or pane, that needs to be added or removed.
Note: this may be CPU intensive as we get a full layout
sync whenever a window title changes, which happens
everytime a shell command is run (the window title takes
the shell command that is being run), so executing a
trivial command like “’1s” would trigger two layout sync.

* [OUT_PTY DATA, int: pane_id, binary:
buffer] This message indicates new data to be dis-
played on a pane. The data is raw and non interpreted.

* [OUT_EXEC_CMD_STR, string: cmd] This
message instructs the replica to run a specific com-
mand (e.g. bind -n M- split-window -h -c
"#pane_current_path") Note that this is a legacy
message. New version use OUT_EXEC_CMD.

* [OUT_EXEC_CMD, string:
...string: args] Same as above,
we have the arguments parsed properly.

* [OUT_FAILED.CMD, int: client_id,
string: cause] This message is used as a re-
ply for IN_EXEC_CMD_STR.

cmd_name,
except that

* [OUT_STATUS, string: left, string:
right] This message sets the current status bar.

* [OUT_SYNC_COPY_MODE, int: pane_id,
[int: backing, int: oy, int: cx, int:
cy, [int: selx, int: sely, int: flags],
[int: type, string: input_prompt, string:

input_str]]] This message synchronizes the current
copy mode. This is done when the user scrolls within a
pane, selects text, or search for some text within a pane.
* [OUT_WRITE_COPY_MODE, int: pane_id,
string: str] Not sure what this one does anymore.
* [OUT_FIN] Seals the session. That means that we
won’t accept reconnections.

* [OUT_READY] Ready means that the initialization
phase is complete, and the configuration files have been
processed. This is a trigger for the proxy to register
the session and trigger webhooks. (Since webhooks are
configurable, it’s important to wait that we have all the
configuration files processed, which we replicate with
OUT_EXEC_CMD)

* [OUT_RECONNECT, string:
reconnection_data] Sent right after the OUT_HEADER.
The reconnection_data is an opaque string passed from
the proxy.

* [TMATE_CTL_SNAPSHOT, [[int:
[int: curx, int: cur_y], int:
[[string: 1line utf8, [int: char_attr,
o1, o1, Lo, .01 Sent right after the
OUT_RECONNECT message. The snapshot contains each
pane’s content. For each pane, we send each parsed
lines in utf8, each with all their attributes (color, blink,
etc.). A configurable amount of history can be retreived
for each pane, to allow scrolling up. We also send the
alternate vt200 screen.

pane_id,
mode,

4.3.2 replica to host

The replica sends the following messages to the host:

* [IN_NOTIFY, string: msg] This prints the
message to the status bar so we can communicate with
users. All these messages are retrievable by running
“tmate show-messages” in a shell. For example:

$ tmate show-messages Connecting
to ssh.tmate.io... Note: clear your
terminal before sharing readonly
access web session read only:

https://tmate.io/t/ro-hoh9SSovQ8z1c0AAxf0kVZGZu

ssh session read only: ssh

ro-hoh9880vQ8z1cO0AAxf0kVZGZulny2. tmate.io
web session:
ssh session:

* [IN_PANEKEY, int: key] This instructs the
host to direct a keystroke to the active pane.

* [IN_PANE KEY, int: pane_id, uint64
keycode] Same as above, except the target pane is
specified, and the keycode is parsed to the new tmux
format. Note: Mouse support is experimental.

* [IN_RESIZE, int: sx, int: sy] This in-
structs the host to resize its window to a specified size.

* [IN_EXEC_CMD_STR, int: client_id,
string: cmd] This instructs the host to run a
specific command. (e.g. split —window — h)

* [IN_EXEC_CMD, int: client_id,
...string: args] Same as above, except the
arguments are split into an array.

* [IN_SET_ENV, string: name, string:

https://tmate.io/t/5F1caD9F0vYCDENk3cQpkI4Q
ssh 5F1caD9F0vYCD6Nk3cQpkI40Q@ny2.tmate.io

value] Used to send environment variables to the
host. Currently, the following environment variables
are defined: tmate_ssh, tmate_ssh_ro, tmate_web,
tmate_web_ro: each of these variable contain the
connection string to connect to the remote session either
via ssh, or the web interface. Further, the variable
reconnection_data may be set, which enables the
reconnection protocol. On the host, the user can read
the value of a variable with such shell command: $
tmate display -p ’#tmate_ssh’

* [IN_READY] This instruct the host that the environe-
ment variables are set. The user can run the following
command to wait for this message: $ tmate wait
tmate-ready This way, the user can wait before print-
ing the environment variables.

4.4 Proxy

We mentioned earlier that the remote tmate server con-
nects to a proxy. The proxy is coded in Elixir, and runs
on the Erlang VM. The proxy lies on the same machine
to reduce latencies, but serve different functions: a) pro-
vide websocket access to terminal sessions for HTMLS
clients b) emit events to the master (we’ll talk about the
master later) ¢) do RPC calls to the master due to SSH
exec calls d) send webhooks events e) handle reconnec-
tions f) notify the host of any clients joining or leaving
the session g) gather latency measurements

When a tmate replica connects to the proxy, the proxy
instantiates a new Erlang process. This process is iso-
lated from the other processes on the VM. During its
lifetime, the proxy receives a copy of the stream that the
host sends to the replica. The initialization process of the
session process is the following:

4.5 when the replica connects to the proxy

1) Before accepting the TCP connection from the replica,
we ping the master server. If the ping fails, then the con-
nection is refused, which in turns rejects the connection
to the tmate host. This is required due to our high avail-
ability protocol. 2) Session parameters from the replica
are received, including the session tokens, and the public
key of the host. 3) tmux commands from the host config-
uration files are received and parsed to locate any web-
hook configurations. 4) Once the OUT_READY message is
received: a) If we got any reconnection data, we proceed
with the reconnection protocol (more details below). b)
the session is registered to the local session registery (an-
other erlang process), which is essentially a map from
the session tokens to the pid of the session. c) The web-
hook process is started with the configured webhooks. d)
the environment variables (ssh_cmd, ssh_cmd_ro, etc.)
are sent to the host and the user notified with connection

messages. €) The session_open event is emitted to the
master and to the webhooks. f) We notify the user to
upgrade his client if it’s outdated.

4.6 when an HTML.S5 client connects to the
proxy

When an HTMLS client connects to the proxy, it does
the following: 1) Dispatch the HTTP request through
the cowboy library (an HTTP server). 2) For the route
/ws/session/:stoken, we lookup the provided ses-
sion token from the local session registery. When found,
the connection is upgraded to a websocket and the ses-
sion process is monitored for errors. 3) The session
cookie containing the user_id is decrypted and vali-
dated. 4) Instruct the session process to request a snap-
shot to the remote tmate server. A snapshot contains,
for each panes: a list of all the rows in utf§ with the
attribute of each character (fg/bg color, bold, blink, re-
verse), the cursor position, and the terminal mode (cur-
sor hide/show, vt200 mouse enabled, etc.) The snapshot
sends not only the visible lines of each panes, but 300
(configurable) lines of history per pane. This allow the
HTMLS client to scroll up, and see some history. 5)
Once the session process receives a snapshot, it sends
to the websocket the latest known layout, the snapshot,
and then register the snapshot to receive all pane data as
a stream. This is done atomically: once the websocket
receives a pty data for a pane, the pane state must have
been restored to correspond to that point in time. 6) And
then the websocket gets a copy of the data as the remote
slave receives it.

4.7 when clients join and leave a session

When SSH clients join or leave the session on the tmate
replica, the proxy is notified. This allow the proxy to
maintain a list of connected clients. The proxy ses-
sion process also tracks websocket clients. When a
client join or leave the session, the master is notified
via session_join and session_left events respec-
tively. These events are also sent to webhooks. Each
client screen size is tracked so that when any screen size
change, the proxy can compute the minimum size and
send it to the tmate host.

4.8 Webhooks

Webhooks allows service integration with tmate.io.
When one of those events is triggered, a HTTP
POST JSON payload is sent to the webhook’s con-
figured URL. The webhooks are configured via two
configuration directive: tmate-webhook-url and
tmate-webhook-userdata. The url corresponds to

the endpoint tmate should send events to, and the user-
data value gets to be included in every event payload.

All events are sent with the following generic payload
structure:

{ type: "event_type", entity_id:
"d8d1cbb2-£5d6-11e5-b8£0-888888888788" ,
userdata: '"some private data", params:

)

The type denotes the event type (e.g.
session_open), entity_id is the corresponding
event entity (e.g. the session_id), userdata corre-
sponds to the string from the /.tmate.conf file, and
params is a hash containing additional event data.

For each event, the proxy sends the JSON payload to
the configured endpoint, and expects a 2xx HTTP re-
sponse code. On failure, it will retry sending that event 5
times maximum, sleeping 3 seconds between tries. If the
maximum amount of tries is reached, the failed event is
discarded, and the next event is sent over.

The following describes the different events.

4.8.1 session_open

{ type: "session_open", userdata:
"some private data", entity_id:
"d8d1cbb2-f5d6-11e5-b8£0-888838888788" ,
{ stoken:
stoken_ro: "ro-QX35Q8ukrxz2M1Dz7PewujUQ9",
ssh_cmd_fmt: '"ssh web_url fmt:
"https://tmate.io/t/reconnected: false,
pubkey: "AAAAE2VjZHNhLXN...", ip_address:
"74.64.123.124", client_version: "2.2.1" }

}

The session_open event is sent when a new ses-
sion is created or when a session has reconnected af-
ter a network failure. entity-id is the session id.
stoken and stoken_ro are the read/write and read-
only session tokens. ssh_cmd_fmt and web_url_fmt are
the connection strings where %s must be replaced with
stoken or stoken_ro depending on the desired access.
reconnected is a boolean to denote if the session was
created, or got reconnected. In the case of a reconnec-
tion, The entity_id will have the same value as the
previously received session_open event. However, the
connection strings may be different as the SSH server
might be different. However the tokens will remain the
same. You may assume all connected clients (see be-
low) have left the session when receiving such reconnec-
tion event. pubkey is the SSH public key of the tmate
host. ip_address is the IP address of the tmate host.
client_version is the client version of the tmate host.

params:

"gX5RFpICOEONnOtLMDOWDr0QeO'

4.8.2 session_close

{ type: "session_close", userdata:
"some private data", entity_id:
"d8d1cbb2-f5d6-11e5-b8£0-888888888788",
params: {} }

The session_close event is sent when the host
closes the session. No reconnection may be expected at
this point. * entity_id is the session id.

* gsession_join { type: ‘"session_join",
userdata: '"some private data", entity_id:
"d8d1cbb2-£5d46-11e5-b8£0-888888888788" ,
params: { id:
readonly: false, type: '"web", identity:
"76ee0360-f5dc-11e5-bed2-04018£4b2301",
ip_address: "74.64.126.154", } }

The session_join event is sent when a client con-
nects to a tmate session. * entity_id is the session
id. * id is the client id, a UUID corresponding to that
client connection. * readonly is true when the client
connected via the readonly token. * type can be either
ssh or web. * identity is the SSH public key of the
client when type is ssh. If type is web, the identity cor-
respond to a meaningless UUID. * ip_address is the IP
address of the client.

4.8.3 session_left

{ type: '"session_left", userdata:
"'some private data", entity_id:
"*d8d1cbb2-f5d6-11e5-b8f0-888888888788" ,
params: { id:
b

The session_left eventis sent when a client discon-
nects from a tmate session. * entity_id is the session

id. * id is the client id.

4.8.4 session_stats
{ type: "session_stats",
userdata: '"sometoken", entity_id:

"edd54332-f5da-11e5-b01e-04018£f4b2301"
params: { id:
latency: { n: 53, mean:
26.11320754716981, stddev:
3.3262382157076864, median:
p99: 35} } }

The session_stats event is sent to provide aggre-
gate statistics on service quality for each client. *
entity_id is the session id. * id is the client id. If
id is null, the statistics corresponds to the tmate host.
* latency gives aggregate statistics on latency, mea-
sured every 10 seconds by sending a ping packet to the
clients and host. If the client id is not null, the latency
corresponds to the end-to-end latency, that is client

25, p90: 31,

"76ee3600-f5dc-11e5-a64d-04018£f4b2301"

"76ee3600-f5dc-11e5-a64d-04018£f4b2301"

"76ee3600-f5dc-11e5-a64d-04018£f4b2301"

latency + host latency, which is the perceived la-
tency by the client. If the client id is null, the latency
corresponds only to the host latency. * n is the number of
samples acquired. Samples are taken every 10s. * mean,
stddev, median, p90 and p99 are the mean, standard
deviation, median, 90th percentile, and 99th percentile.

4.9 Latency measurements

To monitor the quality of service, tmate measures the
latency of its clients. The latency is measured for the
three kind of clients: 1) the tmate host 2) the SSH
pty clients 3) the websocket clients. Both 1) and 2)
are using an SSH connection. To measure the latency,
we send keepalives by sending global requests with
“keepalive @openssh.com” as data with a request for re-
ply. Different clients reply differently. libssh (1) sends
an unimplemented packet reply to keepalive requests and
other clients like openssh (2) sends a request denied
packet to keepalive requests. By measuring the time dif-
ference from the keepalive request and the reply, we are
able to measure the latency of the client. With web-
socket, it’s easier as the websocket protocol includes a
PING/PONG protocol. We measure the latency of clients
every 10 seconds. The proxy aggregates these latencies
for each client to compute the mean, standard deviation,
median, 90th percentile, and 99th percentile. The per-
centile are computed efficiently with a tree.

4.10 Protocol
4.10.1 Replica to Proxy

The following describes the messages send from the
replica to the proxy.

* [CTL_OUT_HEADER, int:
ctl_proto_version, string: ip_address,
string: pubkey, string: session_token,
string: session_token_ro, string:
ssh_cmd_fmt] string: client_version, int:
client _protocol_version] This message is the first
message the replica sends to the proxy.

* [CTL_OUT_DEAMON_OUT_MSG, object: msg]
This message is a wrapper around the stream of
messages the host sends to the replica.

* [CTL_OUT_SNAPSHOT, [[int: pane_id,
[int: curx, int: cur_y], int: mode,
[[string: line utf8, [int: char_attr,
...11, .., ... 1, ...1] This message represents
a terminal snapshot.

* [CTL_.OUT_CLIENT_JOIN, int: client_id,
string: ip_address, string: pubkey,
boolean: readonly] This message indicates
that a SSH client has joined the session.

* [CTL.OUT_CLIENT_LEFT, int: client_id]
This message indicates that a SSH client has left the
session.

® [CTL_OUT_EXEC, string: username,
string: ip_address, string: pubkey,
string: command] This message is sent when a
SSH client request an SSH command to be executed.

* [CTL_OUT_LATENCY, int: client_id, int:

latencyms] // client_id == -1: tmate host
This message is sent to report latencies.

4.10.2 Proxy to Replica

* [CTL_IN_DEAMON_FWD_MSG, object: msg] This

message tells the replica to forward the msg to the host.

* [CTL_IN_REQUEST_SNAPSHOT, int:
max_history_lines] This message instruct the
replica to generate a snapshot.

* [CTL_IN_PANE KEYS, int: pane_id,
string: keys] This message sends a string to a
specfic pane. The replica translate this into the relevent
keystokes to the host.

* [CTL_IN.RESIZE, int: sx, int: sy]
// sx == -1: no clients Indicates the desired
terminal size.

* [CTL_IN_EXEC_RESPONSE, int: exit_code,
string: message] Sends a reply to the SSH client
requesting an command exec.

* [CTL_IN_RENAME_SESSION, string: stoken,
string: stoken_ro] Rename the session name after
reconnecting (visible on the /proc/sel f /cmdline).

4.10.3 Proxy to HTMLS

* [WS_OUT_DAEMON_OUT_MSG, object: msg] This
message is a wrapper around the host stream.

* [WS_OUT_SNAPSHOT, [[int: pane_id, [int:
cur_x, int: cur.y], int: mode, [[string:
line_utf8, [int: char_attr, ...11, ...],

..1, ...1] This message contains the terminal
snapshot. Proper care

4.10.4 HTMLS to Proxy

* [WS_IN_PANE_KEYS, int: pane_id, string:
keys] This message instruct the proxy to send the
specified keys in a specific pane.

* [WS_IN_EXEC_CMD] This message instruct the proxy
to send the host a command to execute.

* [WS_IN_RESIZE] This message instruct the proxy
the current window size.

4.11 Reconnection protocol

Tmate supports a reconnection protocol from the host to
the replica in case of network failures. We want the host
to be able to reconnect to a different replica server, in
case some tmate.io servers go down. However, we do
not want users to be able to forge a session token. Thus,
host must be able to prove that the session token they
are trying to reconnect to is legitimate. To this end, the
proxy server packs the session id, the session token, and
the readonly session token. It then uses an HMAC to sign
the data, and sends it to the host as an environment vari-
able. When the host detects a connection failure (with a
TCP keepalive failure for example), it tries to reconnect
to a replica. Once the connection is successful, it sends
its header, reconnection data, all tmux commands that
are useful for the state replication, a layout sync, and a
snapshot of the current pane. The proxy gets that recon-
nection data, verify its integrity, and renames the tmux
sockets accordingly as the replica server cannot rename
sockets at this point since its in a tight jail.

4.12 High Availability

To maximize user experience, we ought to provide a high
availability service. Our requirements are the following:

1) the tmate host local interactions should never be im-
paired due to any networking problems (e.g. slow, inter-
ruputed, choppy) regarding the tmate.io service. This is
dealt with the design of the tmate host as all network
related mechanisms are asynchronous to the terminals.
There is no RPC towards tmate.io.

2) When a tmate.io server fails, the infrastructure
should heal, and clients should experience a minimal in-
terruption. This is dealt with various places: a) when
the tmate host detects a connection problem towards the
replica, the host initiates the reconnection protocol as ex-
plained above. b) when the tmate replica detects a con-
nection problem towards the host or the proxy, the replica
dies, killing any SSH clients, and disconnects abruptly
from the proxy, in the hope that the host triggers the re-
connection protocol. ¢) when the proxy detects an issue
with the tmate replica, it shuts off, killing any HTMLS5
clients, and notify the master that the session is experi-
encing a loss of availability, in wait for the tmate host
to initiates the reconnection protocol. d) when the proxy
detects an issue with the master, the tmate.io runs in a de-
graded state: new HTMLS clients may no longer connect
as the HTMLS clients rely on the master to get the URL
of the proxy websocket. Note that the proxy does not do
any RPC towards the master, but only emits events, so if
the master is not responding, the proxy survives.

3) tmate.io should scale accordingly to maintain a
good performance SLA. a) first, it would be a good thing

to use cgroups to manage machine resources per session.
This way, if there is a very noisy session, other sessions
on the same host would remain unaffected. b) In case
the number of connected clients become very large on
a single session, we would have scaling issues with the
current infrastructure. We would need to replicate the
session to other machines. This is easy to do as we would
just need to forward the replication log file.

4.13 Master

The master service is coded with elixir, using the phoenix
framework (equivalent of ruby-on-rails in the Elixir
world). The master is a traditional web application with a
postgres database. The master is not geographically dis-
tributed as opposed to the other pieces in the system that
we’ve seen so far.

The master service does not serve HTML, but only
provides JSON APIs. The web user-interface is a sep-
arate javascript frontend application that communicates
with these APIs.

The proxies communicate with the master service via
the Erlang RPC mechanism. Some additional glue was
put in place to retry requests in case of network failures,
but essentially, the master service responds to the events
that the proxies send, store them, and projects them into
its postgresql database. The projections are coded in a
way that tolerate duplicate events. For this, the master
service leverages uniqueness indexes on postgresql to get
clean getorcreate semantics. For example, we store SSH
identities in a table, each row has a unique public key
that follow a singleton pattern.

TODO: Explain data structures that we use in post-
gresql.

4.14 Web Frontend

The frontend is coded with numerous plugins. First, we
use babel to transpile ES7 javascript to regular javascript.
We use bootstrap for the style. jQuery for AJAX helpers.
We use React for composing our Ul elements, with
various plugins. To package all of our javascript, we
use webpack, which allow very powerful workflow such
as react component hot loader, or advanced javascript
chunking to optimize load times client side.

To display the terminals, we use term.js, original work
of Fabrice Bellard. We had to fix a few bugs and do some
adaptation (focusing terminals needs to be synchronized
across clients for example). Some control sequences
were not properly recognized due to the terminal being
a screen-256colors instead of an xterm. Mouse coordi-
nates were not properly done.

The application uses react router to provide in-
stant navigation in the application. When loading a

/t/session_token URL, The application renders a
session react component. The life cycle of a ses-
sion component goes as follow: First, a request to
/api/t/session_token is sent to the master service,
which replies with a websocket URL. A connection is
then made to that websocket. The Ul component then
waits for the session layout and snapshot. Upon a layout
sync, the appropriate window and pane Ul component
are created and destroyed via React engine. Each pane
snapshot is routed to the approriate pane Ul element, and
translated accordingly to the internal representation of
term.js. Once done, the session Ul component enters its
normal state, and recieved pty data is routed to the proper
pane component, which feeds its term.js instance.

When the user presses keystrokes on the window, we
intercept these keystroke and send them via the web-
socket. When the user clicks on a pane, the pane
is selected on the host by sending a tmux command
select-pane -t #pane-id. We could also imple-
ment pane resizing and window splitting in a similar
fashion, but such buttons have yet to be implemented.

If the tmate host was to disconnect, the websocket con-
nection would then close, and the HTMLS client would
automatically reconnect seamlessly. A feature not possi-
ble with SSH.

4.14.1 Threat Model

We investigate two different thread models against dif-
ferent architectures.

The first threat model *T1* assumes an attacker that
can perform man-in-the-middle attacks between tmate.io
and the host, or clients. The attacker can also trigger an
exploit in the tmux replica codebase. (But We assume a
bugfree kernel, erlang vm, ssh implementation)

The second threat model *T2* assumes a malicious or
compromised tmate.io service.

The question is: can the attacker gain access to an
unauthorized session terminal and see some content of
its panes?

1) The first architecture is the current architecture. Un-
der T1, the attacker cannot gain access to unauthorized
sessions. SSH/HTTPS provides authentication against
MitM attacks, and the tmux replica codebase runs in a
jail.

Under T2, the attacker can gain access.

2) The second architecture assumes that clients no
longer connects via SSH, but a custom tmate remote
viewer to perform end-to-end encryption. This custom
viewer would be a client side tmate replica at its heart,
while tmate.io acts as an evolved proxy. The tmate host
would specify a secret key, unknown to tmate.io. Clients
would be required to use this secret key, in addition to

10

the usual session token. This secret key may be commu-
nicated via a side channel.

The host would send all messages encrypted with
the secret key except for the following message:
OUT_HEADER, OUT_FIN, OUT_READY, OUT_RECONNECT.
All received messages the host would receive would
be encrypted except for IN_NOTIFY, IN_SET_ENV, and
IN_READY. This way, tmate.io can still operates correctly
and provides all the usual features.

All messages would be encrypted with a counter en-
cryption (CTR) and signed/verified with an HMAC.

Note that the tmate host may set, change, or unset the
secret key at any time during a session. Users may go off-
the-record for a period of time they chose without having
to stop or restart a session.

The down side of this approach are: a) clients would
be required to use a special client as opposed to using
SSH. the HTMLS interface would require a custom ex-
tension not provided by tmate.io. b) No data can be used
by tmate.io.

The good side of this approach are: a) privacy con-
cerns are addressed under T1 and T2. b) maybe that
could be a feature users would pay for.

4.14.2 User Authentication

tmate.io supports three ways to authenticate users:

1) OAuth through GitHub 2) Email 3) SSH exec com-
mand

TODO.

4.15 Data Flow

The system follows an event sourcing pattern. Similarly
to Synapse, the system has publishers, a common data
bus, and subscribers. Contrary to Synapse, the publish-
ers to do have any database, they write directly events to
the data bus, and views are projected accordingly. This
has a number of benefits: - writes are highly availaible,
scalable, and have low latency. - debuggability is im-
proved as all application state mutation are persisted. -
data loss is greatly reduced as the only possible write op-
eration is “’insert”. The drawbacks of event sourcing are:
- no guarantees about reading your own writes. Not sure
how big of a problem this is yet. - we must use UUIDs
everywhere.

4.16 Monitoring

For the monitoring, we use a stack of statsd, collectd,
graphite so we can collect statistics around usage of
tmate.io throughout the day. The proxies also send la-
tency metrics to statsd.

The C codebase catches SIGSEGV and prints the
backtrace in the logs. In the past year, crashes were not
the issue, but process hanging was. For example, we
had a bug where a SIGCHLD signal handler would call
printf(), which internally calls malloc(). When a signal
was triggered during normal code execution interrupting
a malloc() call, a deadlock would occur due to a double
malloc() call. In these cases, analyzing a core dump is
more useful.

We use rollbar, a 3rd party service, to report errors
from the Elixir codebase. We also use rollbar to report
errors from the Javascript codebase. Note that we also
provide javascript mapping from the compiled javascript
to our source code so we can have readable backtraces.

4.17 Deployment
4.17.1 Server side

All of our infrastructure is deployed with chef. To up-
grade the tmate replica codebase, a recompile and a ser-
vice restart ensures that new sessions run the new code.
However, the existing running session are not migrated
to the new codebase. However, with Elixir, we use exrm
and edeliver to compile a bundle that allow a hot patch
of the running Elixir services. This way, we can upgrade
the codebase without having to restart the daemon, we
don’t close any running connections, and all the existing
application state is migrated to the new codebase.

4.17.2 Client side

When we release a new version of the tmate host, we
need to distribute on various platforms. 1) tmate is in the
official tree of homebrew. I have to make pull requests
to get it upgraded. Their build bot compiles tmate for the
three versions of Mac OSX. 2) For Ubuntu, A contributor
Javier Lpez creates the ubuntu releases. 3) On Gentoo,
tmate is in the official tree. 4) On Arch, contributors get
it updated 5) I also provide static builds for amd64, 1386,
and armv7/l.

4.18 User Manual
4.18.1 Installation

You may find tmate in your package manager. Other-
wise, you may install the static binaries.

4.18.2 Running tmate

1) Make sure you have ssh keys available on your ma-
chine. Run ssh-keygen otherwise 2) Launch tmate.
You should see a connection string in the form ”ssh
XXX @xx.tmate.io” at the bottom of the screen. With

11

this connection string, people can connect to your termi-
nal. 3) If you need additional connection accesses, you
may run tmate show-messages. You will see some-
thing of the form:

Connecting to ssh.tmate.io... Note:
clear your terminal before sharing
readonly access web session read only:

https://tmate.io/t/ro-DYok0JDncSXywEAhNyPzHZPS6

ssh session read only: ssh
ro-DYok0JDncSXywEAhNyPzHZPS6@ny2 . tmate. io
web session:
ssh session:
You may share any of these connection accesses de-
pending if you want web or ssh access, or read/write or
read-only access.

4.18.3 Configuring tmate

As tmate is a fork of tmux, it reuses the tmux config-
uration file, /.tmux.conf. Additionally, tmate reads
the /.tmate.conf where the following options can be
specified:

* tmate-identity: use a specific SSH key, instead of
the default one. * tmate-server-host: Use a custom
tmate remote server instead of the official ssh.tmate.io. *
tmate-server-port: tmate server port. * tmate-server-rsa-
fingerprint: SSH fingerprints of the tmate remote server.
* tmate-server-ecdsa-fingerprint: SSH fingerprints of the
tmate remote server. * tmate-display-time: Configures
how long tmate status messages stays. Defaults to 10
seconds. * tmate-webhook-userdata: Configures a cus-
tom webhook (see above for more information). * tmate-
webhook-url: Configures a custom webhook (see above
for more information).

Since tmate is a fork of tmux, it supports all of its 85
commands (e.g. new-session, split-window, pipe-pane).
See the man page of tmux for a complete reference:

http://manpages.ubuntu.com/manpages/trusty/man 1/tmux.1.html

4.18.4 Reverse Tunnel example

The following shows an example of how to run tmate as
a daemon:

Launch tmate in a detached state
$ tmate -S /tmp/tmate.sock new-session
-d # Blocks until the SSH connection is
established $ tmate -S /tmp/tmate.sock wait
tmate-ready # Prints the SSH connection
string $ tmate -S /tmp/tmate.sock display
-p ’#tmate_ssh’

4.19 Future Work

* There’s some non trivial graphic bugs to fix with the
use of term.js. Instead of streaming the pty data to the

https://tmate.io/t/1Ir20RWWFkkFqzddq39R5RM6E
ssh 1Ir20RWWFkkFqzddq39R5RM66@ny2.tmate.io

browser, we might want to do the rendering server side
(which is done anyways), and send some smart updates
to the browser (a bit like the mosh protocol). So maybe
we should remove term.js and replace it with our own
thing to get something really robust.

* Provide a mosh client

* send the session stream to cassandra to record the
sessions. Each column would be keyed by a timestamp,
and the value would be a frame. a frame would start
with a snapshot, and 30 seconds of session data (or 1Mb,
whatever comes first). This would allow easy scrolling in
time like a youtube video.

* We also need to interpret the terminal line by line
(not row by row, which can wrap), keep only the raw
text, and ship it to elasticsearch for indexing and full-text
search. This would also be useful for regular expression
triggers on text.

* The HTML dashboard: - it would present all the ses-
sions associated with the account. - it needs to present
100’s of terminals potentially. The thumbnails need to be
something relevent. Perhaps rendering session snapshots
into some small .png would be a good idea. - we also
need some “new terminal” button next to a host name.

* We also need to push the initd function of the local
tmate daemon. We want to be able to make it work in a
Docker environment to launch the processes.

5 Evaluation

We deployed tmate is three different environments: a
public geographically distributed service for remote pair-
ing, a continuous integration service integration for de-
bugging purposes, and a test bed environment for scala-
bility testing on Amazon AWS.

5.1 AWS deployment

We ran experiments on Amazon AWS with up to 100
c3.large instances (2-core, 4GB) running simultaneously
to saturate tmate. To evaluate tmate throughput and la-
tency under high load, we developed a stress-test mi-
crobenchmark simulating N simultaneous sessions run-
ning. A session is comprised of one tmate host connected
to one tmate daemon. tmate daemons run on k dedicated
servers. We connect s ssh clients, and 4 html5 clients to
each session. The tmate host streams 10kb/s of pty data
to the tmate daemon, which in turns is streamed to the
clients.

Figurel shows scaling properties with many sessions.
Shown on the x-axis the number of sessions, and on the
y-axis the 95th percentile of the latency perceived from
the clients, sampled every second for a minute. We con-
nect one ssh client and one html5 client (s=1,h=1). The

12

latency is measured by the clients. Each client period-
ically writes a character into a pane, and measures the
time it takes to receive an echo back. The figure shows
various cluster sizes with k=1,3,10,30. We see that the
service capacity grows linearly w.r.t. the cluster size, at
arate of X sessions/server.

Figure2 shows a single session with many clients.
Shown on the x-axis the number of clients, and on the
y-axis the perceived latency. We scale the number of
ssh clients separately from the number of html5 clients.
The tmate daemon bottlenecks at X ssh clients with no
html5 clients, and Y html5 clients with no ssh clients.
A host can accomodate many more html5 clients com-
pared to ssh clients because each ssh client consumes a
fair amount of CPU due to pty rendering, while html5
clients impose only modest overhead on the server as
html5 clients receive the same data stream.

We also wanted to evaluate how a noisy session can
affect other sessions on the same server. On a machine
with X running sessions, we took X/2 sessions to make
stream as much data as they could. We measured the
perceived latency of the remaining session. We found
that X. (should we use cgroups and throttle tasks?)

Note: Should we evaluate a graphical / VNC type of
solution? Even though these sort of solutions are not re-
ally practical as they require the sharing of a whole desk-
top screen, and not just share a window.

5.2 Public deployment (tmate.io)

We provide a public geographically distributed environ-
ment for people to use. Our public deployment is de-
ployed at seven different locations: sf, to, ny, In, am,
fk, sg on the DigitalOcean cloud. In the past month
(March 26 to April 26 2016), there was 31805 sessions
created. If we only look at the sessions that had at
least one client connected, this leaves us with 3939 ses-
sions (12%). The rest of the discussion focuses on these
sessions. The mean and median session duration was
260min and 30min respectively. 10% of the sessions had
at least two different clients connected (identified with
their SSH keys) and 2% had at least three clients con-
nected. The maximum was 6 clients connected. The
sessions were created by 1409 different hosts, and we
saw 1496 unique SSH clients connecting to these ses-
sions. We saw 6033 different client connection, 11% of
them were through the HTMLS interface. Among all re-
mote clients, we measured the end to end latency (RTT
of client to tmate.io + RTT tmate.io to the host). For
each client connection, we recorded the mean, median,
P90 and p99 of the end to end latency. The mean of the
means is 420ms. The median of the mean is 168ms. The
median of the median is 134ms. The median of the p90 is
228ms. The median of the p99 is 444ms. These latencies

are low enough to make remote pairing a pleasant ex-
perience. tmate is typically used on week days between
10am and 6pm.

5.3 Travis-CI integration

Travis-CI [1] is a well-known continuous integration ser-
vice used by more than 200,000 projects. Travis-CI mon-
itors a project’s git repository and runs the test suite when
the repository receives new commits. This way, regres-
sions are caught early when running code. When the test
suite fails, it can be for a variety of reasons. Some fail-
ures may be hard to diagnose. Unfortunately, Travis-CI
did not offer any ways for users to interactively inspect
and debug their tests. tmate was integrated to Travis-CI
to allow users to interact directly with the machine that
runs their test suite.

At the moment, users can insert a “debugging” state-

13

ment in their test pipeline, which spwan a new SSH con-
nection string for users to connect and debug their test
suite. Without tmate, implementing this feature would
be difficult. An SSH server would need to be spawned in
the test running container, which port should be properly
rounted on the VM host. with tmate, this feature is easy
to implement.

Not sure what to say in term of evaluation for the mo-
ment, as we won’t do any crazy load for the moment.

6 Conclusions

tmate conclusion.

References

[1] Travis-Cl. https://travis-ci.org.

